68Ga microfluidics

Dezső Szikra1,2, Gábor Máté1, Gábor Nagy2

1. Institute of Nuclear Medicine, University of Debrecen, Debrecen, Hungary
2. Scanomed Ltd., Debrecen, Hungary

COST meeting
12 July 2014, Warsaw
University of Debrecen, Institute of Nuclear Medicine

- GE PETtrace (16.5 MeV cyclotron)
- GMP production
- more than 500 FDG batch/year (8-10,000 doses)
- 50 11C-methionine batch/year
- 11C-choline just received marketing authorization
- http://www.nuklmed.deoec.hu/
Scanomed Ltd. Debrecen

- 10 cameras (2 PET/CT)
- 8200 SPECT scans/year
- 4400 PET/CT scans/year
- 30 isotope diagnostic tests
- Iodine and Zevalin therapy
- clinical trials
- www.scanomed.hu
PET microfluidics

- reaction in channels with diameter < 1 mm
- large reaction surface
- high thermal conduction
- easy control and optimization of the reactions
- high reproducibility
- high throughput
- well established for 11C and 18F chemistry
Microfluidic radiolabeling of biomolecules with PET radiometals

5-8uM 68Ga$^{3+}$, 100-160uM NOTA-RGD, 37°C
Why should we replace the pipette?

- Better reproducibility (heating, mixing)
- Low precursor consumption (μl volumes)
- Automatic optimization (pH, concentration, temperature, reaction time)
- On-line HPLC analysis
- On-line purification
Home-built microfluidic system

- Syringe pump
- Injector valve
- HPLC pump
- Reactor
- Online HPLC
- Autosampler with precursors
- Capturing valve

- $^{68}\text{Ga}^{3+}$
- 10,5m x 0,15 mm PEEK capillary
- 10 ul Ga + 10 ul HEPES buffered chelator
- Reaction conditions: 95°C, 5 min.
- 20 ul reaction mixture injected onto column
Home-built HPLC autosampler

- 15 sample
- Internal/external needle wash
- 2 wash cycles
- Cross contamination <0.3% (UV det.)
- 10ul injection volume
- Partial loop filling
- RSD = 0.29%
Control: Arduino Mega 2560 R3
Code written in Arduino

```cpp
// Code written in Arduino

readingStep = digitalRead(stepPin);
readingHome = digitalRead(homePin);
readingExtEmpty = digitalRead(extEmptyPin);
readingExtFill = digitalRead(extFillPin);

// ****************************STEP
if (readingStep != lastStepState) {
    lastStepTime = millis();
}
if ((millis() - lastStepTime) > debounceDelay) {
    stepState = readingStep;
    if (stepState == HIGH) {
        motorSpeed = 300;
        stepper.setMaxSpeed(motorSpeed);
        stepper.setSpeed(motorSpeed);
        stepper.move(780);
    }
}
```
Gallium injector

- 10 ul loop
- injection with loop overfilling
- RSD = 0.6%
Circulated air thermostat

- 10,5m x 0,15mm PEEK capillary
- Fan
- Heating coil
- Temperature stability: ±0,1°C
HPLC separation of 68GaNOTA and 68Ga$^{3+}$

Adsorbosphere XL SCX 5μ 250x4,6mm
A: water
B: 0,2M tartaric acid
C: 5% NaCl
0min: 65%A, 30%B, 5%C
5min: 65%A, 30%B, 5%C
7min: 0%A, 30%B, 70%C
13min: 0%A, 30%B, 70%C
Optimization experiments with NOTA

Radiochemical purity (%)

Ligand concentration (μM)

pH

95.0 - 100.0
0.0 - 95.0

Radiochemical purity (%)

Ligand concentration (μM)

pH

95.0 - 100.0
0.0 - 95.0
Manual vs. microfluidic
Production experiments

<table>
<thead>
<tr>
<th>Material</th>
<th>Ligand concentration (μM)</th>
<th>Flow rate (mL/min)</th>
<th>Reaction time (min)</th>
<th>Measured activity/Injected activity (%)</th>
<th>Radiochemical purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTA</td>
<td>10</td>
<td>0.066</td>
<td>5</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>NOTA</td>
<td>10</td>
<td>0.132</td>
<td>2.5</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>NOTA</td>
<td>10</td>
<td>0.264</td>
<td>1.25</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>NOPO</td>
<td>1</td>
<td>0.066</td>
<td>5</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>NOPO</td>
<td>1</td>
<td>0.132</td>
<td>2.5</td>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>NOPO</td>
<td>1</td>
<td>0.264</td>
<td>1.25</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>NODAGA-(RGD)$_2$</td>
<td>10</td>
<td>0.066</td>
<td>5</td>
<td>96</td>
<td>99</td>
</tr>
<tr>
<td>NOPO-RGD</td>
<td>1</td>
<td>0.066</td>
<td>5</td>
<td>99</td>
<td>97</td>
</tr>
</tbody>
</table>
Gallium adsorption

68Ga-retention (%)

pH dependence of the zeta potential

HEPES!

NOTA labeling in acetate buffer

30μM NOTA, pH 3
Gallium adsorption from acetate buffer

![Graph showing Ga-retention vs pH](image)

Graph with pH on the x-axis and 68Ga-retention (%) on the y-axis, showing data points and error bars.
Why should we carry on?

Aims of gallium chemistry

• Development of gallium generator with no germanium breakthrough
• „Perfect chelator” selectively coordinates 68Ga from unpurified eluate
• Final purification can be avoided by using small precursor/buffer amounts → microfluidics

• But: eluate has to be concentrated into microliters
• Can be a useful tool for preclinical experiments